

Jet as a homework from RHIC to LHC

Success of soft physics and a homework from RHIC to LHC

Yasuo MIAKE, November 5, 2009, Yonsei, Seoul

- ✓Soft and hard **VRHIC** Soft physics well understood Hard physics poor understanding **√**RHIC vs. LHC Plenty of jets
- \checkmark What we need for enhance jet physics
 - Extention of EM-Cal
- \checkmark Status as a summary

Soft & Hard comp. in pp

3

✓ At ISR in 1972, deviation from the mt scaling at high pt region is observed as a first time.

Sinary parton scattering followed by fragmentation produces back-to-back jet.

✓ Main source of high pt particles.

back-to-back jet

PSEUDO-REASTOTY

Statistical and Collective Nature characteristic to the QGP formation

Animation by Jeffery Mitchell (Brookhaven National Laboratory). Simulation by the UrQMD Collaboration

- Statistical physics at quark level
- Hydrodynamical behavior at quark level

Key2; Time Evolution

\checkmark It is like Big Bang.

- The Total Time evolution in statistical nature
 - Parton cascade followed by partonic thermalization (QGP)
 - Hadron production
 - Freezeout of v₂ ?
 - Chemical freeze-out
 - Kinematical freeze-out

Need consistent understanding of these epocs, in particular, aspects of statistical nature.

Chemical Eq. from particle yield ratio

Yasuo MIAKE, November 5, 2009, Yonsei, Seoul

Blast Wave Model

STAR Experiment

Difference of Tch and Tkin corresponds to time evolution of the system. Kinematical & Chemical freeze-out show difference in centrality dependence! ➡Chem. freeze-out by T ⇒Kin. freeze-out by what?

Adiabatic Expansion Model

$$V(t) = ct\pi R(t)^2 = ct\pi (R_0 + \beta_T t)^2$$
$$\frac{V(t_{\rm fo})}{kn_{\rm part}\sigma} \sim R(t_{\rm fo})$$

$$t_{\rm fo} = \frac{\sqrt{R_0^2 + 4\frac{k\sigma}{c\pi}\beta_{\rm T}n_{\rm part} - R_0}}{2\beta_{\rm T}}$$

$$T(t_{\rm fo}) = T_0 \left(\frac{V_0}{t_{\rm fo}(R_0 + \beta_{\rm T} t_{\rm fo})^2}\right)^{1/3}$$

- ✓ Intuitive Model
- \checkmark Assuming,
 - Cylindrical expansion
 - Freeze-out condition $\lambda = - \sim R$ • Adiabatic expansion

 $T^3(t)V(t) = \text{Const.}$ $(::s \propto T^3)$

✓Larger fireball freezees out later in time

Kinematical Freeze-out w. Adiabatic Expansion

M. Konno, Tsukuba

Adiabatic Expansion Model (M.Konno, Y.M. 2008)

✓ Adiabatic Expansion Model explains centrality dependence very well.

Freeze-out conditions ; ¹~R

✓In central collsions, the F.B. is so large that F.O. occurs later than peripheral.

> Kinematical freeze-out is collisional, while chemical is not.

Azimuthal modulation of collective flow, V2

 \checkmark In non-central collisions, participant region has almond shape.

azimuthal anisotropy in coordinate space

 \checkmark If λ KR, azimuthal anisotropy of the coordinate space is converted to that of the momentum space.

➡v₂; second Fourier harmonics of azimuthal distribution

 \checkmark Goodies :

• Clear origin of the signal

 $N(\phi) = N_0 \{ 1 + 2v_1 \cos(\phi - \Psi_0) + 2v_2 \cos(2(\phi - \Psi_0)) \}$

• Collision geometry can be determined experimentally

PHENIX PRL 98(2007)162301

Au+Au 200 GeV

Mt scaling & quark number scaling hold!!

✓ In central col., p/ π ratio is very large, while in peripheral, p/ π ratio similar to those in ee/pp suggesting fragmentaton process.

Fragmentation process should show $n_p < n_{\pi}$ as seen in ee/pp.

 \checkmark While mass ordering of v₂ seen at low pt region, clear departure observed.

 \checkmark Suggesting other production mechanism.

Yasuo MIAKE, November 5, 2009, Yonsei, Seoul

Quark Recombination Model (Quark Coalescence Model)

Quark Coalescence explains Baryon Anomaly, and ,,,

Yasuo MIAKE, November 5, 2009, Yonsei, Seoul

also explains na scaling !

Refer to the textbook!

CAMBRIDGE

Catalogue

Home > Catalogue > Quark-Gluon Plasma

Quark-Gluon Plasma

Series: Cambridge Monographs on Particle Physics, Nucle

Kohsuke Yaqi Urawa University, Japan

Tetsuo Hatsuda University of Tokyo

Yasuo Miake University of Tsukuba, Japan

Hardback (ISBN-10: 0521561086 | ISBN-13: 97805215610 For price and ordering options, inspection copy requests, and rea UK, Europe, Middle East and Africa | Americas | Australia and Net

Blast Wave Fitting of v2 and spectra

Adiabatic Expansion Model (M.Konno, Y.M. 2008)

✓ pt distributions measured in plane and out-of plane are B.W. fitted independently

M. Konno, Tsukuba

B.W. Fitting Results

Adiabatic Expansion Model (M.Konno, Y.M. 2008)

200

180

°__

$\sqrt{7}$ are the same in plane and out-of plane, while $\beta_{T}(\text{in-plane}) > \beta_{T}(\text{out-of plane})$

U V

Modulations wrt. the ØRP

$\sqrt{T_2} \simeq 0$, while clear modulation in β .

\checkmark Reaction Plane is determined independently.

Yasuo MIAKE, November 5, 2009, Yonsei, Seoul

- $\sqrt{\beta_2/\epsilon}$ is the constant in Au+Au and Cu+Cu, while v_2/ϵ shows ~ $N_{part}^{1/3}$.
 - Difference comes from the fact that v2 is sensitive to T_{fo} as well. Strength of v2 is diluted if the T_{fo} is high.
 Central collision shows lower T_{fo} because of the late freeze-out.

'Bright' future of v2; heavy flavor and thermal photon

positive results of thermal photon.

Ju ⇒v2 is interesting business!!

Partonic energy loss Medium response Tomography

QCD

Bethe-Heitler formula Energy loss ∝ N_e GLV formula Energy loss ∞ N_g

 \checkmark Characteristic energy loss in dense matter

Key2; Shock Wave in copious gluon field

 ✓ If confirmed, it is breakthrough from the era of QGP discovery to the study of property, such as sound velocity in the plasma

⇒Sound velocity c_s ~ eq. of state

Shock Wave from Bevalac

From slides shown by S. Nagamiya at Tamura Symposium, Nov. 2008

Figure 4. Schematic figure of the various stages in a central collision between an incident smaller (relativistically contracted) and a heavier target nucleus. The head-front shock is drawn very dark. The Mach-shock wave, which is traveling to the sides, also contains high density but not as high as the projectile head. A minor backward fragment ejection along the Mach-front is also indicated. This is expected especially in the diving stage, where it is easier to eject fast particles along the Mach-shock into free space. A secondary Mach-shock wave of intermediate density is also indicated.

W. Greiner's proposal.

\checkmark It has been a dream of heavy ion physicists !

Yasuo MIAKE, November 5, 2009, Yonsei, Seoul

Effects in Hard comp. observed immediately

For comparison, Au +Au & pp spectra scaled by N_{binary}.

✓ In peripheral collisions, Au+Au ~ pp

- √In central collisions, Au+Au < pp
 - Suppression of yield?

Loss of p_T ?

Suppression of high pt particles

Yasuo MIAKE, November 5, 2009, Yonsei, Seoul

AutAu vs dtAu

✓ High pt suppression in Au+Au, while not observed in d+Au.

➡Effect is not due to initial state, but final state. ber 5, 2009, Yonsei, Seoul

✓From broad/none to distinct two shoulders
at $\Delta \Phi = \pi \pm 1$ with decreasing momentum.

Shoulders at $\Delta \Phi = \pi \pm 1$ - Au + Au 0-20% PHENIX, arXiv:0705.3238 [nucl-ex] ----p+p 1/N^AdN^{AB}/d∆∮

3-4 ⊗ 2-3 GeV/c

000

 $\Delta \phi$ (rad) Location & <pt> of shoulder seem to be independent of centrality and pt.

000

If confirmed, Shock Wave / Mach Cone !

Õ

 \checkmark Effect is very fragile, sensitive to mom. range and ZYAM correction

Yasuo MIAKE, November 5, 2009, Yonsei, Seoul

0.04

0.02

П

≺ jet

High Tower Trigger (HT): $(\eta \times \phi)=(0.05\times 0.05)$ ET>5.4GeV

35

Jet - hadron corr.

Mateusz Ploskon (LBNL), STAR, QM'09

✓ Study of "jet quenching" in terms of the energy flow

Yasuo MIAKE, November 5, 2009, Yonsei, Seoul

Au+Au: Strong broadening of the jet energy profile

22

Mateusz Ploskon (LBNL), STAR, QM'09

✓ Effects are energy loss and broadening !!
 ✓ Narrow cone may be another control variable
 ➡ We like to extend and bring up to a precision meas.

Yasuo MIAKE, November 5, 2009, Yonsei, Seoul

p+p: "Narrowing" of the jet structure

with increasing jet energy

Frustration at RHIC, and hope at LHC

LHC

RHIC

Pantuev, arXiv:hep-ph/0701.1882v1

What we want is high energy parton as a probe
All the frustrations at RHIC are due to low energy jet

from the RHIC:

Jet Quench/

partonic energy loss

Medium response

Tomography

View from RHICians

	RHIC	LHC
√ snn (GeV)	200	5500
T/T _c	1.9	3.0-4.2
ε (Ge V/fm ³)	5	15-60
τ _{QGP} (fm/c)	2-4	>10

✓Nothing much changes from RHIC to LHC.

- Nevertheless,
 - Larger/longer QGP
 - ➡Nice to confirm RHIC results
- ✓ Moreover, higher energy jets become available!

Chances are at LHC

Indeed, my life with PID

1986 BNL-AGS E802 TOF

E866 TOF with OTD

100 stats of BC404 1.25x1.25x48 cm with R3478S readout

1995? BNL-AGS E866 TOF

Yasuo MIAKE, November 5, 2009, Yonsei, Seoul

QGP made of soft particles

Animation by Jeffery Mitchell (Brookhaven National Laboratory). Simulation by the UrQMD Collaboration

✓QGP with T~a few 100 MeV is made of soft particles.

- Meas. of soft/low pt particles is a must for the property of QGP.
- ✓As a probe of QGP, high pt parton is important
- ✓In other words, modification of soft particles with high energy jet is what we want to study.

Enhance back-to back capability

Proposed in Feb.,2009 Discussed in March Proposal in May Jcal(B1) approved in July B6 approved in Oct.

Proposal available at http://utkhii.px.tsukuba.ac.jp

Probes for the study

 π^{0} -Jet

✓ Quark Jet✓ Small Xsection

✓Experimentally
difficult

<u>Di-jet</u>

✓ Clean π⁰ trig
 ✓ Large Xsection
 ✓ Important for
 J-Cal

101

Systematic meas. of these processes for model comparison provides at high precision level.

may be difficult

Yasuo MIAKE, November 5, 2009, Yonsei, Seoul

Extension of EM-Cal

✓ J-Cal (EM) for back-to back jets in ALICE

- ➡Define back-to back jets
- Trigger back-to back jets

✓Why back-to back jets?

- Origins clean
- Kinematically clean
 - Energy balance
 - ⇒back-to back in phi
- ✓ Physics Goal
 - Modification of soft particles with high E jet
 - ➡Mach Cone, Ridge, etc
 - Tomography of QGP

Beam View

5 contiguous modules possible, while exact backto-back is 3

Key issues; resolutions

✓ Good characteristics of Back-to back jets

- Origins clean
- Kinematically clean
 - Energy balance
 - back-to back in phi
- ✓Need to have better resolutions
 - ⇒RMS of $(\phi_1 \phi_2)$ ⇒RMS of $(E^{jet_1} - E^{jet_2})$

Energy Resolution

 ✓ Statistical fluctuation in neutrals dominates the resolution.

- ✓ J-Cal improves the resolution from ~45% to ~35%
- ✓ Imbalance in energies provides information on the partonic energy loss.

Fluctuations under total energy conservation

CDF, PRL94(2005)171802

E^{JET}=E^{CHARGED}+E^{NEUTRAL}

 $dE^{CHARGED} = -dE^{NEUTRAL}$

✓ Statistical fluctuation with total energy limitation

Total jet energy is fixed.
 fluctuation of neutral play significant role

Jet trigger in Pb+Pb

Fig.8.4 of TDR

✓ With R_{cone} = 0.2, triggering jet of < 50 GeV becomes difficult.</p>

✓ Back-to back in phi will improve trigger efficiency

Technical Challenge

E12:N177

✓Backgrounds !

- A lot of mini-jets may sweep away the jet structure.
- √Keys are,
 - higher the jet energy, S/N ratio improves
 - ➡OK as a probe of QGP
 - kinematical cleaness of di-jets structure improves the S/N
 - But, higher the jet energy, the rate drops !
 - ➡Need optimization !

√Why not with PHOS?

- For jets, eta coverage of PHOS is too narrow.
 - ➡Cone radius of >0.2 needed
 - ⇒Dijet w. r_{cone} = 0.4 can be done with B6 config.
- Why you don't extend PHOS?
 - Too expensive
 - Prefer uniform coverage

 $\sqrt{No \gamma / \pi^0}$ separation above ~10GeV w. EMcal. what you gonna do?

• rates of γ/π^0 differ by ~10³

• Things are tough. Systematic meas. and PHOS helps to entangle these.

Details by T. Chujo, T. Horaguchi and H. Yokoyama 54

JCal Collaboration

China

Huazhong Normal University

Finland University of Jyvaskyla

France LPSC Grenoble, Subatech Nantes, IPHC Strasbourg

Italy INFN Catania, LNF Frascati,

Japan

Hiroshima University, University of Tokyo, University of Tsukuba,

Switzerland

CERN

USA

Lawrence Berkeley National Laboratory, Wayne State University, University of Houston, University of Tennessee, Lawrence Livermore National Laboratory, Yale University, Oak Ridge National Laboratory, Creighton University, Cal Poly San Luis Obyp Counter (Wayns), Alice week@CERN, 19 Oct. 2009

B6 Configuration allows largest possible jet radii in JCal

T.M. Cormier (Wayne) Alice week@CERN, 19 Oct. 2009

First Consequence: Mini Frame Severely Limits Access

Common **PHOS-JCal** cradle

- Estimated weight of 1 transverse row 4.3 t
- Cradle total weight : 13 t
- Cost estimation (total support cradle) 150 -180 k€
- Availbility : 6 months after order,

• The system features 3 transverse rows, each made of 3 elements, a central one, and 2 side ones.

Raw material : SS 304 LN

Funding Status, Near term plans and schedule

<u>Japan</u>: Funding in place and preparations for module construction start well under way – critical path – scintillator delivery

<u>China:</u> Wuhan. Partial funding promised. Module construction start possible as soon as April. Critical path - A lot of preparatory work still needed, finalize funding

<u>France</u>: Subatech, Grenoble and Strasbourg. Funding discussions with IN2P3 November 13th. Construction and assembly facilities ready. Critical path - finalize funding

<u>USA:</u> Funding discussion with DOE November 30th. Construction and assembly facilities ready. Critical path finalize funding

T.M. Cormier (Wayne) Alice week@CERN, 19 Oct. 2009

Funding Status, Near term plans and schedule

<u>Schedule Objective</u>: completion of full JCal in time for winter 2010 – 2011 shutdown

<u>Schedule realities:</u>

- completion of all detailed design and integration work including new PHOS rail and cradle is on schedule. No "show stoppers" foreseen in the remaining work. Procurement process of cradle and new PHOS rail must start very soon.
- Most of the required detector production capability is already in place. The balance can easily be added in time for a late summer 2010 completion
- Key requirement for success is funding in place by start of 2010

http://www-cdf.fnal.gov/events/detintro.html

Forward calorimeter

rich physics menu

- high gluon density physics
 - shadowing
 - CGC
- event plane, centrality
- Imiting fragmentation
- diffractive physics?
- forward π^0 in pp

- Technology?
 - Si-W? (à la PHENIX Nosecone Calorimeter)
 - Pb-scint? (à la ALICE EMCal)

Note: The scope of the JCal project includes replacing only a single PHOS rail.

If Future addition of other HEAVY detectors is contemplated, then both rails should be replaced at this time providing funding can b^{-1}

Example of HEAVY:

T.M. Cormier (Wayne)

Alice week@CERN, 29 – 19 Oct. 2009

